

Milestone of hybrid rice at IRRI

- 1972, IRRI started hybrid rice research
- 1979, IRRI revived hybrid rice research
- 1979, IRRI-China started collaboration on
- hybrid rice • Since 1980's, IRRI provided 90% of Chinese
- restorer lines directly or indirectly1982, Yield advantage of rice hybrids in the
- tropics confirmed 1990s, India & Vietnam started hybrid rice
- programs with IRRI
 Since 1994, commercial hybrids released in India, Philippines, Vietnam with IRRI parents

Country	Bangladesh	India	Indonesia	Philippines	Vietnam	Total	China
Total Rice	11,200	44,000	12,165	4,250	7,305	78,920	29,23
Irrigated Rice *	4,263	22,665	7,037	2,801	3,904	40,667	27,004
Hybrid Rice **	300	1,100	130	341	650	2,521	19,00
HR % of Irrigated Rice	7.0	4.9	1.8	12.2	16.6	6.2	70.4
* http://www.irri.org/su	cience/ricestat/	/data/may/	2008/WRS20	108-Table30.p	<u>df</u>		

Mission of IRRI Hybrid Rice Program

- Development of germplasm, parents and hybrids as internationally public goods
- Research on technology for breeding and seed production
- Collaboration with NARES and private sector in hybrid rice research and production
- Promotion of exchange of information, technology, scientists and germplasm
- Training and Capacity building

Strategy of IRRI Hybrid Rice Program

- Focusing on conventional tools and integrate them with proven non-conventional methods to develop the technology
- Developing parental lines, especially female parents with high outcrossing to promote hybrid rice production
- Facilitating development of close partnership with public and private sectors
- Intensifying agronomic research to get maximized manifestation of heterosis in hybrids

Hybrid rice research priorities at IRRI

- Increase and stabilize yields of seed production
- Enhance yield heterosis in both dry and wet seasons to >20%
- Improve hybrid rice grain quality
 - Reduce chalk
 - Increase head rice recovery
- Improve resistance to biotic stresses
- Develop hybrids for unfavorable environments
- Improve breeding efficiency (biotech)

Utilization of IRRI hybrid rice germplasm

<u>1994-2005</u>

- 12 IRRI hybrids released in India, Indonesia, Philippines, Vietnam, and Bangladesh
- IRRI-bred CMS lines were used as hybrid parents and released by NARES (12) and the private sector (6)

				1/10/02/14/03	1010 U COV P.		011000000000
IRRI Hybrid R	ice Germ	plasm Share	ed with NAF	RES and F	Private Sec	tors from 2	004 to 2007
Arconting	0	C C	Peter struct the	TOTAL	rigonia	Contents	16
Australia	13	13			7		33
Bandadesh			11		65		192
China	17	30	54	3	14		(118)
Eavot	3	3				1	\sim
India	175	175	269	34	68	8	(729)
Indonesia	5	5			23	1.000	33
tran	16	16	27		14		73
Japan	6	8					12
Kenva	21	21	62	7			111
Korea					1		1
Laos					4		- 4
Malaysia	5	5	10	-4			24
Myanmar	7	7	21		17		52
Nepal	14	12	3				29
Nigeria					29		29
Pakistan	13	13	8	11			45
Philippines	72	64	107	14	153		(410)
Russia	8	8	7		17		40
Rwanda					5		5
Sri Lanka	10	10			16		36
Thailand	19	19	22	10	13		83
USA	13	13	6		3		35
Venezuela	27	27	43	.5			102
Vietnam	10	10		5	6		31

Possible cause for declining heterosis

Narrow genetic diversity in hybrid rice parents

- All hybrid rice germplasm were directly derived from inbred breeding
- Less understanding of heterotic pools for tropic rice germaplsm
- Are there any heterotic gene/gene blocks?

Strategies to enhance heterosis

- Increase genetic diversity in hybrid germplasm (heterotic pools)
 - Molecular markers
- Traditional grouping methodsBiotechnology application
- Parental selection
- Heterotic gene/gene block
- Exploiting sub-species heterosis
 - Among indicas
- Indica x New Plant Type
- Application of 2-line hybrids to expand germplasm pools

				Yield Adva	ntage (%)
Year	Season	Hybrid	Yield (kg/ha)	> PSB Rc 82	> IR75217H
2007	ws	IR81950H	6429	24.8	5.7
2007	ws	IR82363H	6413	24.5	5.4
2007	ws	IR85466H	6478	25.8	6.5
2007	DS	IR82372H	9119	21.1	8.1
2007	DS	IR84711H	9101	20.9	7.9
2006	DS	IR82386H	8895	23.2	6.7

		Yield Ad	vantage (%)
Hybrid	Yield (kg/ha)	> PSB Rc 82	> II You 128
IR82363H	8578	29.9	8.2
IR75217H	8556	29.6	7.9
IR80228H	8505	28.8	7.3
IIYou128	7928	20.1	-

Country Bangladesh India Indonesia Philippines Vietnam Total Chin na 4,476 13,961 2,963 1,203 2,873 25,476 1,455 of Total Rice Area 42.0 32.4 25.3 29.2 39.0 33.6 5.0
Pa 4,476 13,961 2,963 1,203 2,873 25,476 1,455 of Total Rice Area 42.0 32.4 25.3 29.2 39.0 (33.6) 5.0
of Total Rice Area 42.0 32.4 25.3 29.2 39.0 33.6 5.0

Average he	ead rice yield and o	chalk performanc	e of hybrid rice)
Season		Head Rice (%)	Chalk (%)	n
	Inbred	47.9	10.9	39
Dry	Hybrid	41.1	16.8	240
	Hybrid vs Inbred	- 6.7	5.8	
	Inbred	51.7	15.0	33
Wet	Hybrid	46.7	19.9	223
	Hybrid vs Inbred	- 5.0	4.9	

	Amylose	Chalk	Head Rice	Total Rice	GEL TEMP	GEL CON	YIELD	Remarks
SBRc 64	24	5	56.4	69.0	HVL	soft	6771	inbred check
SBRC 82	25	5	60.8	70.0	НИ	soft	7226	inbred check
R68284H (Mestizo)	21	9	61.7	69.3	L	soft	5435	hybrid check
R73834S/IR69726-29-1-2-2-2	24	1	56.2	69.9	١L	soft	7842	two-line
R73328A/PR26208-17-1-1R	23	1	62.5	71.0	HWL	soft	7391	three-line
R68897A/IR69712-154-2-3-1-3F	R 27	5	54.8	69.8	٧L	soft	7546	three-line
R70369A/PR25458-8-1-3-1R	27	5	60.6	69.8	٧L	soft	7978	three-line

